Mercury and ISTD: Research Overview and Perspectives

Lynn Katz, Justin Davis and Howard Liljestrand

University of Texas at Austin

Mercury is one of the most common metals identified at Superfund sites
Mercury Exposure & Toxicity

- Hg0 and MeHg are **NEURO- and NEPRHOTOXINS**

<table>
<thead>
<tr>
<th>Species</th>
<th>Important Exposure Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg0</td>
<td>Inhalation</td>
</tr>
<tr>
<td>MeHg</td>
<td>Ingestion</td>
</tr>
</tbody>
</table>

- Facile tissue transport of MeHg:
 - Causes biomagnification up the food chain
 - Makes MeHg an important teratogen

Common Forms of Hg

<table>
<thead>
<tr>
<th>Chemical Properties</th>
<th>Inorganic Mercury</th>
<th>Organic Mercury</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hg<sup>0</sup></td>
<td>HgCl<sub>2</sub></td>
</tr>
<tr>
<td>M.W. [g/mol]</td>
<td>200.59</td>
<td>271.50</td>
</tr>
<tr>
<td>Melting Point [°C]</td>
<td>-38.87</td>
<td>276</td>
</tr>
<tr>
<td>Boiling Point [°C]</td>
<td>356.9</td>
<td>302</td>
</tr>
<tr>
<td>Density at 20°C [g/mL]</td>
<td>13.546</td>
<td>5.44 at 25°C</td>
</tr>
<tr>
<td>Vapor Pressure [mmHg]</td>
<td>1220 at 20°C</td>
<td>834000 at 25°C</td>
</tr>
<tr>
<td>Solubility in H<sub>2</sub>O [g/L]</td>
<td>5.6 x 10<sup>-5</sup> at 25°C</td>
<td>69 at 20°C</td>
</tr>
<tr>
<td>K<sub>OW</sub></td>
<td>4.15</td>
<td>3.33</td>
</tr>
</tbody>
</table>
Key Points that affect remediation

- Elemental Hg is a DNAPL
- Elemental Hg and HgCl$_2$ are volatile
- HgCl$_2$ is soluble
- Hg speciation includes both inorganic and organic forms
- Organic mercury bioaccumulates
Aqueous Speciation of Hg(II) in Aerobic Environments

- **Graph a**:
 - % Hg(II) Distribution vs pH
 - Species: Hg$^{2+}$, Hg(OH)$_2^0$, HgNO$_3^-$

- **Graph b**:
 - % Hg(II) Distribution vs pH
 - Species: HgCl$_2^0$, Hg(OH)$_2^0$, HgOHCl0, HgCl$_3$
Inorganic Speciation in Water

With DOM

With \([S^=] + \text{DOM}\)

DOM speciation
Dominates except at high \([S^{2-}]\)

- freshwater conditions
- marine conditions
- polysulfides absent

Skullberg, U. (2012), Environmental chemistry and toxicology of mercury, pg 215
• Methylation is an accidental byproduct of microbial activity – sulfate reducing bacteria

• Mercury-sulfur speciation is the key to understanding mercury methylation and affects a) bioavailability and b) mercury solubility
• Mercury vs. methyl mercury (MeHg)

 - Methylation is an accidental byproduct of microbial activity

 - sulfate reducing bacteria

\[
Hg^{2+} \rightarrow \text{Methyl Mercury} \Rightarrow CH_3Hg^+
\]

\[
Hg^{2+} \rightarrow \text{Methyl Mercury} \Rightarrow CH_3Hg^+
\]

\[
Hg^{2+} \rightarrow \text{Methyl Mercury} \Rightarrow CH_3Hg^+
\]
Methylation Paradigm

- Mercury vs. methyl mercury (MeHg)
 - Methylation is an accidental byproduct of microbial activity

\[\text{Inorganic Mercury} \quad \Rightarrow \quad \text{Methyl Mercury} \]

\[\Rightarrow CH_3Hg^+ \]

\[\text{uncharged, bioavailable mercury-sulfide} \]
Atmospheric Deposition

Sources of Hg emission

- Utility Boilers: 32.8%
- Municipal Waste Incinerators: 18.7%
- Industrial Boilers: 17.9%
- Medical Waste Incinerators: 10.1%
- Manufacturing: 10.0%
- Hazardous Waste Incinerators: 4.4%

Sources of Mercury Emissions in the U.S.

<table>
<thead>
<tr>
<th>Industrial Category</th>
<th>1990 Emissions (tpy)</th>
<th>2005 Emissions (tpy)</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Plants</td>
<td>59</td>
<td>53</td>
<td>10%</td>
</tr>
<tr>
<td>Municipal Waste Combustors</td>
<td>57</td>
<td>2</td>
<td>96%</td>
</tr>
<tr>
<td>Medical Waste Incinerators</td>
<td>51</td>
<td>1</td>
<td>98%</td>
</tr>
</tbody>
</table>

- Chlor-alkali plants have phased out Hg cells in favor of membranes
- More stringent regulations promoting control technologies such as:
 - Selective catalytic reduction with flue-gas desulfurization (SCR-FGD)
 - Activated carbon injection (ACI) with fabric filter (FF) or electrostatic precipitators (ESP)
- Medical industry phase-out of mercury thermometers

For more information:
- http://www.ehjournal.net/content/8/1/2
- http://www.epa.gov/mats/powerplants.html
Atmospheric deposition has decreased…

But legacy deposition and mining sites have left contaminated soils & sediments

Provide constant flux to ground & surface waters

Stumm, W., & Morgan, J.J. (1996), Aquatic chemistry: chemical equilibria and rates in natural wates
Diverse Site Speciation: Solid & Liquid Phases

Relative maximum compositions for:
1. chlor-alkali deposition
2. Au|Ag|Hg mine processing
3. military/industrial spillage

Davis, J (2012)
NOM is important in both pore water and solid speciation:

WHENEVER ORGANIC MATTER IS PRESENT, IT TENDS TO DOMINATE

Ligand binding strength: \(\text{Hg}–\text{S} > \text{Hg}–\text{N} \approx \text{Hg}–\text{O} > \text{Hg}–\text{Cl} \)

Hg(SR)\(_2\), \(\alpha\)-HgS, \(\beta\)-HgS & thermodynamically favored

Enhanced stability of NOM:

strong linear bridge with weaker contributions from C, N or O ligands

1. Electro-remediation

- Description
 - Uses electrodes to form and extract metal complexes
 - Electromigration, electroosmosis and electrophoresis

- Advantages
 - In-situ, chemical-free treatability
 - Permanent removal of Hg
 - Simultaneous treatment of other metals
 - Effective for soils of low hydraulic permeability

- Disadvantages
 - Interference by non target ions
 - Separation of HgS, generating larger waste volumes
 - May require chemical addition if Hg0 dominates speciation (low solubility in soils)

2. Stabilization/solidification

- **Description**
 - Promotes formation of stable HgS or solidified in sulfur polymer cement

- **Advantages**
 - *In-situ*, low cost treatability
 - Waste volume reduction

- **Disadvantages**
 - Hg is not removed from the soil column
 - Long-term monitoring may be required

3. Nanotechnology

• Description
 o Uses FeS nanoparticles to immobilize Hg

• Advantages
 o In-situ, low cost, low energy treatability
 o No additional waste volume

• Disadvantages
 o Effects of soil pH need to be determined
 o Effects on soil microorganisms need to be determined

4. **Phytoextraction**

 Description
 - Uses living plant roots to extract Hg from contaminated soils

 Advantages
 - *In-situ*, low cost, low energy treatability
 - Permanent removal of Hg
 - No additional waste volume reduction

 Disadvantages
 - Effective only remediates surface soils
 - No hyperaccumulator plant species have been identified
 - Chemical additives may be required for effective removal

From 1950-1982 estimates of 240,000 pounds of mercury released from Y-12 to Upper East Fork Poplar Creek. An estimated 2 million pounds of mercury was unaccounted for.
Thermal Desorption

Thermal Desorption

In-situ Thermal Desorption

Why thermal desorption works:

- The graph shows the relationship between temperature (T °C) and pressure (PRES (mm Hg)) for various substances.
- The equation $1000/T = 1000/K$ is used to plot the data.
- Substances such as Benzene, Water, Mercury, Naphthalene, PCB 1242, PCB 1260, Benzene, Water, Mercury, Naphthalene, PCB 1242, and PCB 1260 are depicted.
- The table below provides vapor pressure data for Hg (Hg0) and HgCl$_2$:

<table>
<thead>
<tr>
<th>Substance</th>
<th>pVap (mm Hg)</th>
<th>Hg0</th>
<th>HgCl$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.22E3 @ 20 °C</td>
<td>8.34E5 @ 25 °C</td>
</tr>
</tbody>
</table>

Stegemeier, G. L., & Vinegar, H. J. (2000), *Hazardous and radioactive waste treatment technologies handbook* (pp. 4.6–1 – 4.6–38)
Experimental Evaluation

Thermal Remediation

Off-Gas Treatment

Courtesy of George Stegemeier
Experimental Evaluation

Thermal Remediation

Sample Vial contains 5% HNO₃/10% H₂O₂

Impinger 1: 5% HNO₃/10% H₂O₂
Impinger 2: 4% KMnO₄/10% H₂SO₄
Impinger 3: 4% KMnO₄/10% H₂SO₄

Off-Gas Treatment

Courtesy of George Stegemeier
Vapor Pressure-Temperature Correlations

Temperature (°C)

Vapor Pressure (atm)

C10F18 correlation (29)

Mercury data (30)

C10F18 data
Perfluorodecalin can be used as a surrogate for elemental mercury.

Experimental Evaluation: Controlled Experiments

Experimental Evaluation: Controlled Experiments

Elemental mercury removal compared to STARS simulation

Two approaches:

1. Thermodynamic modeling
2. Standard thermo-desorption curves
Experimental Approach: Field Samples

Speciation determined by comparing thermal desorption of field soils to thermodynamic modeling (FactSage)

Experimental Approach: Environmental Samples

Speciation using thermodynamic modeling

<table>
<thead>
<tr>
<th>Model species</th>
<th>Mercury (M)</th>
<th>Inorganic ligands (M)</th>
<th>Redox condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hg^{2+}</td>
<td>Hg_2^{2+}</td>
<td>Cl^-</td>
</tr>
<tr>
<td>$Hg(l)$</td>
<td>2.4</td>
<td>9.0e-7</td>
<td>< 1.0e-1</td>
</tr>
<tr>
<td>$HgS(s)$</td>
<td>2.4</td>
<td>1.0e-8</td>
<td>-</td>
</tr>
<tr>
<td>$HgCl_2(s)$</td>
<td>2.4</td>
<td>1.0e-8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Phase transition simulation of $Hg(\ell)$

Phase transition simulation of $HgS(s)$

Experimental Approach: Environmental Samples

Speciation using thermodynamic modeling

Phase transition simulation of HgCl$_2$(s)

```
<table>
<thead>
<tr>
<th>Model species</th>
<th>Mercury (M)</th>
<th>Inorganic ligands (M)</th>
<th>Redox condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hg$^{2+}$</td>
<td>Hg$_2^{2+}$</td>
<td></td>
</tr>
<tr>
<td>Hg(l)</td>
<td>2.4</td>
<td>9.0e-7</td>
<td>&lt; 4.4</td>
</tr>
<tr>
<td>HgS(s)</td>
<td>2.4</td>
<td>1.0e-8</td>
<td>-15</td>
</tr>
<tr>
<td>HgCl$_2$(s)</td>
<td>2.4</td>
<td>1.0e-8</td>
<td></td>
</tr>
</tbody>
</table>
```

HgCl$_2$(s) \rightarrow HgCl$_2$(g)

Experimental Approach: Environmental Samples

Speciation using standard thermo-desorption curves

Probability distributions of thermally desorbed standards

Experimental Approach: Environmental Samples

Speciation using standard thermo-desorption curves

Experimental Approach: Environmental Samples

Speciation using standard thermo-desorption curves

- Elemental
- Chlorides
- Sulfides & Cinnabars
- Humic & Acetic Acids, Oxides, Sulfates, & Nitrate

References:
- Watling et al. (1972)
- Bombach et al. (1994)
- Windmoller et al. (1996)
- Bäster & Nehrke (1997)
- Bäster & Scholz (1997)
- Bäster et al. (2000)

EPA Method 7473 T > 750°C

Eddy-Dilek, C. et al. (2012), Remediation of Chlorinated and Recalcitrant Compounds Conference
Post-treatment: Scrubbing

<table>
<thead>
<tr>
<th>Traditional scrubbing techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet scrubbing</td>
</tr>
<tr>
<td>Activated carbon injection</td>
</tr>
<tr>
<td>Sulfur-impregnated activated carbon</td>
</tr>
<tr>
<td>Gold amalgamation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced scrubbing techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver-promoted molecular sieves</td>
</tr>
<tr>
<td>Metal-sulfide systems</td>
</tr>
</tbody>
</table>

Post-treatment: Schematic

Post-treatment Remediation: Hg(II) Adsorption to Fe Oxides
Where do we go from here?

1. Obtain more experimental data regarding:
 • Speciation effects
 • Matrix-binding effects (e.g. FeS–Hg, NOM–Hg)
 • Mixed-Waste
2. Perform mechanistic analyses, account for variation among similar species
3. Validate and improve thermodynamic models
4. Improve field characterization methods
5. Perform optimization studies
6. Construct pilot projects
Acknowledgements

Gary Pope, PGE

Graduate Students: Anna Kunkel, Ricci Lampert, Jeremy Siebert, Chang Min Park, Jeremiah Mangold

Terratherm, George Stegemeier, Harold Vinegar